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Energy—~momentum of the self-fields of a moving charge in
classical electromagnetism
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Institut fiir Astrophysik der Universitdt Bonn, Auf demn Hiige] 71, D-5300 Bonn 1, Federal
Republic of Germany

Received 8 August 1991

Abstract. The fundamental problem of the energy and momentum of the self-fields of a
moving charge in the classical theory of electromagnetism has not vet been solved to full
satisfaction. The widely-held belief that the energy and momentum of the electromagnetic
field of a moving charge should behave as components of a 4-vector under a Lorentz
transformation, is not bome out by the conventional theory. This apparent anomaly has
led to extensive attempts on reinterpretations or even to suggestions for outright
modifications of some basic aspects of the classical theory of electromagnetism. We show
here that such drastic steps are not actually needed and that the above mentioned belief
is ill-founded. A relativistically consistent picture emerges in the conventional theory when
a propet account is taken of all the ¢nergy and momentum associated with the electromag-
netic phenomenon in the system.,

1. Introduction

The classical theory of electromagnetism (CTEM) is generally accepted to be in con-
formity with the special theory of relativity. In fact, the Lorentz transformations for
the electromagnetic (em) fields were derived [1] even before Einstein put forward the
special theory of relativity [2]. However, there is one aspect of the creEM which appears
to be non-compatible with the special theory of relativity. There are conceptual
difficulties perceived within the cTEM when one tries to calculate the energy and
momentum associated with the em field of a moving charge, which make it almost
appear as if in the conventional theory of classical electromagnetism, the concept of
simple charged particles and electromagnetic fields are in some way inconsistent [31].

This problem has been known in the literature for a long time and its detajled
history has been documented elsewhere [4-7]. We shall briefly mention some of it
here, only to put the problem in a proper perspective. In 1881, Thomson [8] made the
first attempt in calculating the electromagnetic contribution to the mass of a charged
particle, by identifying the energy in the magnetic field of a moving charge with the
kinetic energy of motion of its electromagnetic mass. In 1903, Abraham [9] proposed
a purely Em model of the ‘elementary’ charged particle, namely the electron, which
had then only recently been discovered by Thomson [10]. Abraham assumed that the
mass of an elementary charge was purely of electromagnetic origin and he calculated
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the mass from the amount of momentum in the em fields of the charge, when set in
a uniform motion. In these calculations, Abraham always took the charge distribution
te be spherically symmetric, irrespective of the motion of the charged particte. Lorentz
[1] modified Abraham’s calculations by proposing that during a motion ‘through the
ether’, length of the charged particle would contract in the direction of its motion. The
results thus derived by Lorentz remain valid even for a post-relativistic model, even
though the reasons put forward by him for the ‘Lorentz-contraction’ are unacceptable.
Subsequently Lorentz [11] also calculated the inertial mass of a charged particle, in
a more sophisticated way, from its rate of change of momentum in the presence of its
electromagnetic self-interaction. The inertial mass in all such calculations turned out
to be 4U /3¢ (see for example, Schott [12] for detailed calculations), where U is the
electrostatic self-potential energy of the charge distribution, also equal to the volume
integral of the electrostatic field energy-density, and c is the speed of light in vacuum.

With tha ar‘unnf af tha cnnr\v:ﬂ theaaryu nF rnlnf\uitu lf hacrama alane that tha
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associated with all energies and that the expected value of mass due to self-fields would
be U/c? This puzzling factor of 4/3 in the inertia of EM energy has ever since been
highly annoying.

In 1906, Poincaré [13] pointed out that such a pure Em charge particle would be
unstable due to forces of seif-electrostatic repulsion. By postulating the presence of
some ‘unknown internal (negative) pressure’ within the electron for its stability and
by including an appropriate contribution from these non-electromagnetic stresses he
was able to get the ‘right’ relations for the total energy and momentum. Since nothing
was known about the origin and fundamental nature of these ‘Poincaré stresses’ within
the electron, these seemed to be chosen merely to fit the solution. Further this made
it look as if one could not even calculate the energy-momentum content of just EM
fields, without questioning the stability of the associated charge-distribution, perhaps
through some non-electromagnetic interactions, and as if the cTEM were not complete
in itself. Over the time, the fundamental nature of these peculiar difficulties has led
many eminent workers to suggest various basic modifications [14-19] in the cTEM,

Alternatively it has been argued [20-24] that perhaps the conventional formulation
of the self-interaction or the expressions for the energy-momentum content of the Em
fields are not fully justified, since these appear relativistically non-covariant. With the
belief that the energy and momentum of the EM fields should alway behave like the
components of a 4-vector under a Lorentz transformation, a modified definition of the
energy-momentum density of M fields associated with electric charges, seems to be
gaining wider acceptance [4, 5, 25-28]. This modified definition in fact has been used
[29] for ‘explaining’ the null-results of the famous Trouton-Noble experiment [30],
where the conventional definition of the energy and momentum of electromagnetic
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capacitor, as observed from a relatively moving inertial frame of reference. More
recently a number of arguments have appeared in the literature both for and against
the modified definition [31-35]. Indeed the modified definition comprises the volume
integrals of the erstwhile defined energy and momentum densities of fields, but now
computed with respect to a 3p-space volume fixed in some specific inertial frame. This
is also apparent from the explicit presence of u, the velocity of the specific inertial
frame, in the modified definition. In essence, here one has to always first specify an
inertial frame of reference, define the energy and momentum density of the em fields
in this particular frame, and then from the conditions of relativistic covariance can
the energy and momentum density of the EM fields in all other inertial frames of
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reference be defined. This specification of an initial inertial frame (somewhat arbitrary,
at least in the general case}, almost goes against the spirit of the special theory of
relativity. In fact by specifying a different initial inertial frame, one could arrive at a
different value for the energy-momentum content of a given EM field in any inertial
frame of reference. For the energy-momentum content of an em field to have a proper
physical meaning, within the framework of the special theory of relativity, it is certainly
desirable that one should be able to define in principle, the energy and momentum
densities in any inertial frame of reference merely in terms of the field values in that
frame, without a need for referring to another inertial frame,

The ‘troublesome factor of 4/3’ in the electromagnetic mass of a spherical charge
distribution, or some equivalent numerical factors for other charge distributions, arise
in what is a pure electromagnetic description of pure electric charges, and therefore
their explanation also must be found within the realm of the cTEM itself. Furthermore,
for calculating the energy-momentum of exclusively the EM fields of a charge distribu-
tion, one should be able to do so without really worrying about the non-em forces
that may be holding the charges in place. Here the basic question is not about the
description of an ‘actual’ elementary particle by a pure EM model, rather the question
is about the mathematical self-consistency of the cTeEM itself. We attempt to resolve
it here by explicitly showing that all that is needed is to take into account all the work
done by or against all the EM forces in arriving at that charge distribution. In that way
we show that the earlier proposed modifications of the cTEM or the changes more
recently suggested in the literature in the definition of energy-momentum densities of
EM fields are not justified, and that the conventional formulation in the cTEM is fully
consistent with the special theory of relativity. As we will see further, a full accounting
of the work done by or against all the em forces is necessary not only in the ‘classical-
electron’ models but also in all other types of mascroscopic charge distributions in the
CTEM, even in the case of a charged parallel plate capacitor where, while calculating
the stored electromagnetic energy, we never bother about the non-gm forces that keep
the charges from flying away from the plates. Although here we will consider only
some definite simple charge distributions, yet the conclusions drawn are of the most
general nature and thus applicable to any charge distribution in classical electromag-
netism.

2. ‘Classical-electron’ model

Right at the outset we should emphasize that our intention here is not to argue for a
model of an ‘actual’ electron using only classical electromagnetism, rather we are only
trying to bring out the source of apparent discrepancies in the description of the charge
distributions, such as considered previously by Abraham [9] and Lorentz [1,11] for
the ‘electron’ models, all strictly within ‘classical’ electromagnetism. In fact our argu-
ments are valid for finite size charge distributions, even on macroscopic scales. First
we will consider the model where the charge is distributed over a thin spherical shell
(a surface-charge distribution), and then we will also examine the case of a volume-
charge distribution within a solid sphere.

2.1. A uniformly charged spherical shell model

We assume here the charge to be distributed uniformly over a spherical shell of radius
r. We assume that ‘always’, there is available an inertial frame of reference, called the
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rest-frame, in which the charge distribution remains rigidly spherical, i.e. there is no
relative motion between various parts of the charge distribution in its instantaneous
rest-frame. In that sense, the charge distribution follows a ‘rigid motion’ (7], and any
acceleration of the system can be thought of as successive transitions of the system
through a series of ‘rest-frames’, in each of which the charge distribution comes to
rest momentarily.

Now there is a mutual force of electrostatic repulsion between various parts of this
charge distribution, and each element feels an outward repulsive force of 270 per
unit area [36] in the rest-frame, where o is the surface charge density. But due to its
spherical symmetry, the net force on the ‘rigid’ shell is zero. The electric field is zero
inside the shell and follows the inverse square law on the outside. The total energy,
Us, in the electrostatic field, calculated from the volume integral of the field energy-
density E*/8m, is equal to the self-potential energy of the charged sphere, i.e.

U":JE—zdvzljJp'-—(x)p(xl)dudv'{—z (1)

8 2 |x— x| r

here p represents the volume density of the charge distribution and e = [ p dv = 4mr’a
is the total charge of the sphere. Here all volume integrals are in the rest-frame of the
charge distribution.

With this field energy Uy, we can associate a mass, U,/ ¢?, called the electromagnetic
mass of the system. By definition the momentum of the system is zero in the rest-frame.
Seen from another frame K, with respect to which the charge is moving with a velocity
u along the x-axis, the energy and momentum of the system are different as compared
to those measured in the rest-frame K'. Now two points need to be looked at carefully.

Firstly there is a Lorentz contraction of the sphere by a factor y=1/v1-u?/c?,
along the direction of motion. This not only changes the shape of the charge distribution
into an ellipsoid, as seen in K, but also the resultant surface charge density is no longer
uniform (although the charge still remains uniformly distributed over a rigid sphere
as seen in the rest-frame K'). The surface elements lying along the direction of motion
have higher surface charge density due to Lorentz contraction, as seen in K, compared
to those that are lying normal to the x-axis. This in turn causes a greater concentration
of the lines of electric flux towards a plane normal to the direction of motion for the
field of a moving charge. It should be emphasized that the Lorentz contraction is a
real contraction in space [37,38] and that the eillipsoid with a non-uniform surface
charge density has a different self-potential energy from a uniformly charged spherical
distribution. Actually work has been done during the Lorentz contraction against the
forces of self-repulsion, and this excess energy has to be supplied by the very agency
that is responsibie for the state of ‘rigid motion’. Of course the same excess energy
also appears in the eleciric field of the moving charge. This energy increment during
Lorentz contraction is over and above the increase in relativistic energy given by the
usual relativistic transformation formulae, which are applicable to a neutral mass with
no forces of repulsion within it. Secondly there is an excess momentum of the charge
distribution over and above the usual relativistic momentum formula %u/c?, where €
is the total energy of the system in frame K. This extra momentum is due to the fact
that for this given charged-particle system, as it ‘rigidly’ moves along the x-axis (towards
right, say), there is a continuous flow of energy into the system at its left-sided surface
{due to the work being done at a rate F- u, where F is the net force of electrostatic
repulsion on the left-half of the charge distribution) and the same amount of energy
is flowing out of the system at its right-sided surface. Although there is no net increase
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of the system energy due to these flows, there is a continuous transport of energy
taking place from the left-sided surface to the right-sided surface within the system,
and this forms a part of the total momentum of the system. Again this is in addition
to the momentum of the system due to its overall bodily movement towards the right,
such as in the case of motion of even a neutral mass.

We can calculate the energy & and momentum % of a moving charge distribution
in the following way. Let us consider the change in energy of the system when it is
taken from its state of rest to that of a finite velocity along the x-axis, as seen in an
inertial frame K. The implied transition of the system through successive ‘instantaneous’
rest-frames would also mean, at each step, a change in Lorentz contraction of the
system, as seen in K. The total increase in energy of the charged particle is given by

d¢_dP  dWic

drdar " ar 2
here the first term on the right-hand side represents the gain in energy due to bodily
acceleration of the system as a whole, and the second term is due to the work done
against the forces of self-repulsion of the charge distribution during Lorentz contraction.

The rate of work done on the system during the Lorentz contraction can be easily
calculated. All dimensions along the x-axis shrink at a rate d(vy™"/dt. Consider two
infinitesimal surface elements in the shape of circular rings, each of radius r sin # and
of angular width d6, separated by a distance | =2r cos 6 on two oppaosite sides of the
spherical shell along the x-axis, as seen in the rest-frame K’ (figure 1). Each ring has
asurface area dS =2 sin 8 d6, and the outward force on each ring along the direction
of their separation (x-axis) is 27o? cos 8 dS, as seen in K'. As seen in frame K, the
x-component of force on each ring remains unaltered during a Lorentz transformation
[39] and the distance between both rings contracts at a rate

9 s (1)
gy 2reosé "

so that the rate of work done on these rings due to Lorentz contraction is given by

d/1
—47o’r cos® 8— (—‘ ds.
ar\y/

2= 2r cos O

Figure 1. Geometry of the charged spherical shell, in its rest-frame.
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After integration over the whole surface, we get the rate of total work being done on
the charged sphere due to Lorentz contraction as

m&__ 2 i(l)
dt 2mo V°dt y ()

where V, =4mr’/3 is the total volume of the sphere in its rest-frame.

The total momentum of the system in frame K includes the term due to energy
flow associated with the Em forces within the system. Again consider two infinitesimal
surface elements in the shape of rings, and the cross section of the system enclosed
between them. At any instant when the system is moving with a velocity u, the work
being done per unit time on the left ring is 27mo” cos 8 dS u and at the same rate work
is being done by the right ring, which lies at a distance I =2r cos 8/ y. In other words
there is an energy flow at a rate 4qro’r cos® @ dSu/ v, through a cross section d.S cos 8
of the system. Integration over the total cross section of the system yields a net
momentum term due to this energy-flow

2awa’ Vou
yet

It should be emphasized that there is no ‘instant’ appearance of the energy from
the left-sided surface to the right-sided one, rather there is a continuous flow of energy
across its volume as seen in frame K. This energy flow is independent of the details
of how the electromagnetic interaction takes place and is a simple consequence of the
existence of the forces of mutual repulsion between various parts of the system and
its linear motion as seen in frame K. Furthermore the contribution of this momentum
term could be important even for non-relativistic velocities.

The total momentum of the system is therefore given as

2y,
@=($+2’"’ °)1‘2-. (4)
'y [

Substituting (3) and (4) in (2) and writing u/ ¢ = B, after some simplifications we get,

2 2V
o 20) < v22) 0
¥ o/ al

dir \ ¥ /A
Integrating with time and noting that %, = Uy, the self-potential energy for g =0,
we get

g = '}‘( U0+ 2'17'02 Voﬁz).
With the help of (1), we can write it as

_ BN _ev(, B
8_U§y(1+3)_2r (1+3) (5)

Now substituting for € in (4} we also get
u
P = (Ust+2ma?Vy) %i-

or

4  yu 4 ez) yu
=—U,Z=-{=}5=. 6
? 3U°c2 3(2r c? 6)
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Equations (5) and (6) are the long sought-after formulae for the electromagnetic energy
and momentum of a moving charge. Note the presence of the factor 4/3 in (6) even
for non-relativistic velocities.

Now we can also calculate volume integrals of the energy and momentum densities
of the EM fields of a moving charge in frame K, from the standard formulae [26-28, 36]
as,

» _[E+B, . _[ExB
Eﬁeld—J 8 av -"'ﬁeld"J pyny

where E and B are the electric and magnetic fields of the uniformly moving charge,
with B= 8 x E. In g4 the volume integral over only the x-component is non-zero
because of the circular-cylindrical symmetry of the system about the x-axis,

These integrals can be evaluated more simply by making a change of variable into
the coordinates of K' and using the transformation relation in fields and volume
element between K and K',

E;= Ej E,=yE' do=dv'/y

1.

av

to get [28]
. YU
Up—

3 c

Ehea= YUOK I+ ?) Phera=

and these are exactly the expressions as obtained for the ‘particle’ picture of the charge
distribution, namely (5} and (6).

2.2. A solid spherical charge distribution

Actually this case is essentially the same as that of the spherical shell model, differing
only in the mathematical detail. If p is the uniform charge density, distributed in a
spherical volume of radius R, then the radial force density due to the electrostatic field
inside the sphere, in the rest-frame K’, is given by

- A 2.
oE =— p°F
3

for r<= R

Consider a spherical shell of a radius r and of a thickness dr, and hence of a
surface charge density p dr as seen in the rest-frame K'. The rate of work done against
the electromagnetic forces during Lorentz contraction of this charged shell, as seen in
K, is calculated to be

(52) 5G)a

' T 7 ridr

An integration over the whole spherical volume gives the total rate of work being done
against the Lorentz contraction as

(N

where e =47pR’/3 is the total charge of the system.
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In the same manner the momentum component due to energy-flow caused by the
forces of self-repulsion is calculated to be

47 Nu 1 e u
S PR s m o
3 ye* 5R SR ye

Therefore the total momentum is written as

e\ u
=(g+— ).
P (%’ SRy) e (8)
Using (7) and (8) and proceeding from (2) as in the earlier case, we finally get
3 e2 BZ) ( BZ)
g==—vyl1+5 )= 1+
5 R 'Y( 3 Usy 3 (9
and
4etuy 4. yu
=— — = U -—_—
PSR 3 (10)

where U, =3e?/5R is the self-potential energy of the charge distribution in its rest-
frame.

If we calculate the energy and momentum of the em fields of this charge distribution,
now moving with a uniform velocity « in the inertial frame K, we get formulae for
ioa and Pg, 4 identical to those as calculated for the ‘particle’ picture of the charge
distribution, namely (9) and (10).

Before proceeding further we would like to point out an interesting aspect of the
energy distribution between electric and magnetic fields of a moving charge. If we
calculate energies in the electric and magnetic fields separately, we find that in a
semi-relativistic treatment (up to terms of order 87%), the energy in electric field
represents the self-potential energy (internal energy!) of the charge distribution, while
that in the magnetic field represents the kinetic energy of motion of the system. For
example, the energy in the electric field of a moving charge, in frame K, is,

« rE2d U/ B U/ B85
=|—dv= 1-2- )= Ul 145 ).
el J 87 Y 0( 3 ) 0( 6)
Thus the energy in electric Reld of a moving charge is higher than that of a stationary
charge by an amount U,B%/6. Actually this increase just reflects the gain in the
self-potential energy of the charge distribution during the Lorentz contraction, also
calculated respectively from (3) or (7) as,

Uo( 1) B?
22— =U =
3 v °6

In fact a calculation for the electrostatic self-potential energy of a stationary ellipsoid,

obtained from a spherical charge distribution through a uniform compression of its

linear dimensions along the x-axis by a factor +/1~ 82 (thus realizing exactly the same
charge distribution as of our moving charge seen in frame K), gives [40]

L | 2

sin” 3 B

Uy=Uy—=U, (1 +—)

ell L] B 0 6
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where U, is the self-potential energy of the spherical charge distribution, i.e. for 8 =0.
This further confirms our statement about the electric ficld energy representing basically
the self-potential energy even for a moving charge.

At the same time the energy in magnetic field is calculated to be

B? 2
gmag= j S—;dv=§ 7U062
which is relaied io ihe momentum of the charge distribution {{6) or {(10}) by €nap=
ZPu /2, which is exactly the expression for kinetic energy in classical mechanics. Thus
the analogy usually drawn between the electric and magnetic field energies in an
oscillatory electrical circuit on one side and the potential and kinetic energies of a
mechanical harmonic oscillator on the other side [41], becomes more of a homology
in the case of motion of a pure EM charge.

Thus we see that there is no conflict in the ‘particle’ picture for a charge distribution
and its M fields in the cTEM. The earlier confusion was caused by the fact that the
usual Lorentz transformation formuiae for energy-momentum were thought to be
equally valid for a pure charge distribution. Of course we do not imply that now we
can have a pure electromagnetic model for some elementary charged particle actually
found in nature, e.g. an electron or a muon. A quantum electrodynamical treatment
[42] (or perhaps something more exotic [43]) only might give a realistic model of an
elemenentary charged particle. Our intention here has been only to show that for a
given charge distribution, without actually worrying about any non-electromagnetic
forces which may ultimately be needed to keep the charges in place, we do get a
consistent picture of the energy and momentum of electromagnetic origin when we
properly take into account all the work done by or against all the electromagnetic
forces that prevail in the system. In that sense the cTEM is complete in itself and is a
mathematically consistent theory, fully compatible with the special theory of relativity.

This becomes clearer from the fact that the type of effects we have discussed above
need to be taken into account not just in the case of the spherical charge distribution
models of the ‘classical-electron’, but in any charge distribution in the ¢TEM, otherwise
we would always run into some inconsistencies during a Lorentz transformation of
the electromagnetic field energy and momentum. To illustrate this point further we
shall now consider the simple case of a charged parallel plate capacitor, where for
example, while calculating the energy stored in the electromagnetic fields, we never
pause to wonder what may be the {non-clectromagnetic) forces that keep the charges
from flying away from the plate surfaces.

We shall consider the motion of a charged parallel plate capacitor in directions both
normal to the plate surfaces as well as paraliel to the plate surfaces. As we will see,
the effects of a Lorentz transformation are quite different in the two cases, and in fact
in the latter case the electromagnetic forces that are at work are not immediately obvious.

3.1. Mation normal to the plate surfaces

For simplicity we assume that the dimensions (a and b) of the capacitor plates are
much larger than the plate separation, h, so that the electric fields within the capacitor
can be considered, with negligible errors, to be the same as in the case of infinite
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plates. Let +o and —o be the surface charge densities on the two oppositely charged
plates, then the electrostatic field is a constant, 4wo, in the region between the two
plates, and is zero everywhere outside. The mutual force of attraction on each plate
is 2ro” per unit area [36], and the electric potential energy U, accumulated in separating
the two plates by a distance h is 2ma?Ah, where A= ab is the surface area of each
plate. Of course the volume integral of the energy density of the electrostatic field,
(47c)? Ah/8, is also the same as U,.

Now if we see this system from an inertial frame K, with respect to which the
charged capacitor is moving along the x-axis with a velocity u (figure 2}, the electric
field strength remains the same, E = E' =4mwo within the capacitor volume and zero
outside. But as the whole system is Lorentz contracted by a factor y along the x-axis,
the total Em field energy as calculated in K is Uy/y. The magnetic field is zero
everywhere, therefore the field momentum is zero.

ai

Figure 2. A parallel plate capacitor with a motion normal to the plate surfaces.

This appears to be in contradiction with the usual Loreniz transformation formulae
where we would expect the energy of the moving system to have increased by a factor

v. Where has this energy disappeared?

Actually there is the force of attraction between the plates, and during a Lorentz
contraction the system gives up energy to the very agency that is responsible for the
state of ‘rigid motion’ [7]. Further there is a negative momentum component (i.e. in
a direction opposite to the motion of the capacitor), due to the energy flow caused by
the force of attraction between the moving plates.

Proceeding as in earlier cases, the rate of change of energy of the system is calculated
to be

d%€ 4P d /1
e T u+2m72V0——(-)
dr dt di\y
and total momentum of the system as
2mo? Vo) u

(- 222%) 2
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where V= Ah is the volume of the region between the capacitor plates in the rest-frame.
From these we get,

U,
€= 7(U0‘271'0'2V032)=70

and

g‘a—/g 270 Vo ¥ _o
\y 4 )@

these being in perfect agreement with the values calculated above for the EMm fields.

Thus we see that even in the simple case of a parallel plate capacitor, we get a
consistent picture of the energy-momentum of the EM fields only by a proper accounting
of the work done by the electromagnetic forces during the motion of the system.

3.2. Motion along the plate surfaces

We assume the plates to be lying in the x-y plane (figure 3). The electric field between
the plates is parallel to the z-direction. The potential energy of the system as well as
the energy in the electrostatic field is U, =2#7¢?V,, in the rest-frame. But in frame K,
with respect to which the capacitor plates are moving along the x-axis, the electric
field between the plates goes up by a factor ¥, thus there is an increase in the electric
field energy-density in between the plates, by a factor ¥°. The total surface area of the
plates, and hence also the volume enclosed by the capacitor plates, shrinks by a factor
v, there being no change in the plate separation. Therefore there is a net increase in
the total electric field energy by a factor . This appears all right at a first look since
the net force of attraction between the plates being in the z-direction, there is no work
done by it due to the motion of the plates along x-axis, and thus the usual relativistic
formula for the energy transformation seems applicable. But there is aiso a magnetic
field (B= 8 x E) along the y-axis, in between the plates, as seen in K. The total energy
in the M fields therefore is yUy(1+87), and also there is a net field momentum
2U,yu/ ¢t along the x-axis.

To seek the origin of this extra energy and momentum in the em fields, it should
be noted that there are electromagnetic forces of repuision on charges within each
plate, along its surface. We ignored these repulsive forces in the earlier case because
no work is done by these forces for a motion normal to the plate surface, but in the
present case of a motion parallel to the plate surface, work is done against these forces

Figure 3. A parallel plate capacitor with a motion parallel to the plate surfaces.
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during a Lorentz contraction. The forces are indeed small near the plate-centres and
are appreciable only near the plate-edges, and it might seem that for the plate
dimensions (a and b) large enough as compared to the plate separation (h), the effect
of these forces should be negligible. But as we will see below, the amount of work
done during a Lorentz contraction in this case also is proportional to the total velume
enclosed within the capacitor, for k< q, b.

As all motions considered are along the x-axis, only the x-component of the forces
of repuision will be relevant for our purpose. Now the mutual electrostatic force of
repulsion between two line charges, each with a linear charge density A and of a length
b, separated by a distance x is easily calculated to be

2 =
“;"(Vb +x°—x)

Accordingly the net force of repulsion on a line charge of linear charge density o dx
lying at x, due to both plates (figure 4) is given by

2x—a / Z+ w2 _ B Zx—a -
20”7 dx [I dx'( bH{x—x) —(x x))uj dx'ﬁ)—

0 ’ 0 Vh 4 (x=x)

X—x
(vsz-i- R +{(x~x")? —Vhi+ {x— x’)z)}
VR 4 (x—x')?

where the second integral term represents the x-component of the force of attraction
on the line element at x due to the oppositely charged plate lying at a distance A
below. Here we have taken the line element at x to be in the right-half of the plate,
which experiences a net force towards the +ve x-axis; the left-half of each plate would
equally experience a net force along the —ve x-axis. Further, only the portion of each
plate lying between 0 and 2x—a contributes a net force at x, the force due to the
remaining portion of each plate gets cancelled because of its symmetry about x.

P

Ay x

Figure 4. Geometry of the parallel plate capacitor in its rest-frame, for calculating the
forces of self-repulsion within each plate of the capacitor,

Now as observed from an inertial frame K, with respect to which the capacitor
moves towards the right (along + ve x-axis) with a velocity u, the x-component of force
on a charge element remains invariant. Therefore the rate of work being done against
the forces of self-interaction, during Lorentz contraction of both plates, is written as
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{with a change of variable x—x'= £),

(51, Voirgog 2 )
7 d'(V) J:nfzdj.C(zx--a)J’u- dg{ ¢ h* +£ (Vo + b2+ g =V h - E)
=—4¢ z;t (_) J'“dx (2x-a)[(m—x+,/;2+h2_@+bz+hz)

VAT LEay L A X
—bin
Vx*+ kR VxP+b*-b
where ¥ = 1/v'1—u?/ ¢? is the Lorentz factor. An extra factor of 2 in the above expression

has entered because work is done against Lorentz contraction of each plate.
With the help of the indefinite integrals,

_[I (v’x2+b2+h2—b)d
n|l—————>1,4dx
/ 2+h2
/ 2+b2+h2 b
—xln( )+bln Vx?+ b i+ hi—
Vxi+h? (
+htan7'—bx-—
A2+ b2+ h?

and
J' n(\/x +b2+h - b)dx 1 2+h2)ln(~1x2+b2+h2—b) b e
x =5lX —_———— | — VX
Npore ’ N 2

and after some lengthy calculations, we finally get the following expression for the
rate of work done against Lorentz contraction of the system,

2
—4or 2:! (—)[% (Va>+ -k +Vb*+ b -Va + b+ h?)

2
—%—(\/b2+h2—b+\/a2+b2—\/a"+ b2+ k%)

+a—2(Ja2+h2—a+Ja2+b2—Ja2+ b2+ h?)
LN (Ja2+b2+h2—a b )

2 Jbi+h*  Vat+bi-a
an (m_ )

2 Vb i+ h? va*+hl-a
Ja+b’+h’~b o ab

m m_b)+abh tan -—-—hm].
We can expand this complicated-looking expression in terms of an ascending power
series in h/a, h/b, h/Va*+b? as

_4o-zabhl: +o(ﬂ ] Ja_fl_b)] d (1)

—bhzln(
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where O(. ..} represents the first- and higher-order power series terms in h/a, h/b, etc.
Therefore for h« a, b, this reduces to

27V, —d— (l)
¥

where V, = abh is the volume enclosed in between the capacitor plates in the rest-frame.
In a similar manner the component of momenturn due to energy flow associated
with the forces of self-interaction in the system is calculated to be

270 Vou
ye*
Using these last two expressions and proceeding in the same manner as in the earlier
cases, we get

€= yUy(1+ 8% and ?P=2Uo‘y£i2

which are exactly the expressions obtained for the energy and momentum of the EmM
fields, in frame K.

4. Discussion

We have seen that with a proper accounting of all contributions by the M forces in
the system, the relativistic energy and momentum of a macroscopic charge distribution
turns out to be the same as calculated from the conventional expressions for the
energy-momentum density of its EM fields, although sometimes the effect of these
forces may not be so obvious, as for example in the case of a charged capacitor moving
parallel to its plate surfaces. In particular it was seen that the potential energy of a
charge distribution changes, due to Lorentz contraction of the system, when it is set
in motion. This change must reflect in the electric field energy since that basically
represents the potential energy of the charge distribution. Further, there is a momentum
associated with the energy flow due to forces of EM interaction in a moving charge
system, and this also should show up in the Em fields of the system. As we have shown,
the conventional expressions for the energy and momentum of the Em fields do comprise
these contributions. Thus the notion that the energy-momentum of em fields should
behave as a 4-vector, even in the presence of charges, is ill-founded, since that ignores
the additional contribution of the EM forces to the energy and momentum, when the
system is set in motion. The changes suggested in the literature in the definition of
energy-momentum of Em fields, so as to make them always transform as a 4-vector
under a Lorentz transformation, are not justified, since that would amount to selectively
excluding some effects of the EM interaction from the EM fields. It is only by including
the contribution of all EM interactions in the energy-momentum of Em fields, we can
hope to maintain a consistent picture throughout, and that is done precisely by the
conventional definition.

Since no static system could be ‘purely electromagnetic’ in nature, a guestion may
arise about the transformation properties of the energy and momentum of a complete
system. A static configuration of any electromagnetic system in its rest-frame implies
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that there are forces of constraint in the system which necessarily have to be equal
and opposite to the forces of electromagnetic interaction everywhere, irrespective of
the ultimate nature of the forces of constraint. For example in the case of a charged
parallel plate capacitor, the forces of constraint would not only maintain the fixed
separation between the capacitor plates in spite of the force of mutual attraction
between them, but would also keep the charges confined to their respective locations
on the plate surfaces in spite of the net force of electrostatic repulsion on them. Now
as seen from another inertial frame, with respect to which the charged system is in
motion, the work done by the forces of constraint during a Lorentz contraction and
the momentum associated with the energy flow due to forces of constraint would be
equal and opposite to those corresponding to the forces of electromagnetic origin,
since the two forces are everywhere equal and opposite. An inclusion of the contribution
of the terms due to forces of constraint would therefore cancel the corresponding terms
arising due to the forces of electromagnetic origin (for example, the second term on
the right-hand side of (2) and (4)) in the energy and momentum of the moving system.
As a result, the energy-momentum of the total system would behave as a 4-vector
under a Lorentz transformation. This in fact is the key factor in a proper resolution
{44] of the paradox associated with the null-results of the Trouton-Noble experiment,
where the energy and momentum of the total system remain independent of the
orientation of the freely suspended charged capacitor, with respect to all inertial frames
of reference. Thus we see that the energy and momentum of a ‘real’ charged particle,
which includes contributions both of the electromagnetic self-interaction and of the
forces of constraint, would transform as a 4-vector, while the energy and momentum
of its Em fields, which can represent only the ‘pure electromagnetic part’, would not
transform as a 4-vector.

5. Conclusions

We have shown that the energy and momentum of a ‘pure electromagnetic’ charged
system, with net electromagnetic forces between its parts, does not behave as a 4-vector
under a Lorentz transformation. Accordingly the energy and momentum of the elec-
tromagnetic fields, which represent just the ‘pure electromagnetic part’ of a real charged
system, would also not behave as a 4-vector under a Lorentz transformation, in the
presence of electromagnetic forces. In that respect, therefore, there is no conflict
between the cTEM and the theory of relativity and any lingering doubts about the
mathematical self-consistency of the cTEM are removed. Onthe other hand, the modified
definition, as suggested in the literature for the energy and momentum of electromag-
netic fields so as to make them always transform as components of a 4-vector, is not
justified since it is only the total energy and momentum (including that of the forces
of constraint) of a system which would transform as a 4-vector.
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