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Energy-momentum of the self-fields of a moving charge in 
classical electromagnetism 

Ashok K SingaltS 
lnstitut fiir Astrophysik der UnivenitBt Bonn, Auf d e n  Hiigel 71, D-5300 Bonn 1, Federal 
Republic of Germany 

Received 8 August 1991 

Abstract. The fundamental problem of the energy and momentum of the self-fields of a 
movinz charge in the classical theory of electromagnetism has not yet been solved to full 
satisfaction. The widely-held belief that the energy and momentum of the electromagnetic 
field of a moving charge should behave as components of a 4-vector under a Loren& 
transformation, is not borne out by the conventional theory. This apparent anomaly has 
led to extensive attempts on reinterpretations or even to suggestions for outright 
modifications of Some basic aspects of the classical theory of electromagnetism. We show 
here that such drastic steps are not actually needed and that the above mentioned belief 
is ill-founded. A relativistically consistent picture emerges in the conventional theory when 
a proper account is taken of all the energy and momentum associated with the electromag- 
netic phenomenon in the system. 

1. Introduction 

The classical theory of electromagnetism (CTEM) is generally accepted to be in con- 
formity with the special theory of relativity. In fact, the Lorentz transformations for 
the electromagnetic (EM) fields were derived [ l ]  even before Einstein put forward the 
special theory of relativity [2]. However, there is one aspect of the CTEM which appears 
to be non-compatible with the special theory of relativity. There are conceptual 
difficulties perceived within the CTEM when one tries to calculate the energy and 
momentum associated with the EM field of a mouing charge, which make it almost 
appear as if in the conventional theory of classical electromagnetism, the concept of 
simple charged particles and electromagnetic fields are in some way inconsistent [3]. 

This problem has been known in the literature for a long time and its detailed 
history has been documented elsewhere [4-71. We shall briefly mention some of it 
here, only to put the problem in a proper perspective. In 1881, Thomson [8] made the 
first attempt in calculating the electromagnetic contribution to the mass of a charged 
particle, by identifying the energy in the magnetic field of a moving charge with the 
kinetic energy of motion of its electromagnetic mass. In 1903, Abraham [9] proposed 
a purely EM model of the ‘elementary’ charged particle, namely the electron, which 
had then only recently been discovered by Thomson [lo]. Abraham assumed that the 
mass of an elementary charge was purely of electromagnetic origin and he calculated 
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the mass from the amount of momentum in the EM fields of the charge, when set in 
a uniform motion. In these calculations, Abraham always took the charge distribution 
to be spherically symmetric, irrespective of the motion of the charged particle. Lorentz 
[l] modified Abraham's calculations by proposing that during a motion 'through the 
ether', length of the charged particle would contract in the direction of its motion. The 
results thus derived by Lorentz remain valid even for a post-relativistic model, even 
though the reasons put forward by him for the 'Lorentz-contraction' are unacceptable. 
Subsequently Lorentz [ l l ]  also calculated the inertial mass of a charged particle, in 
a more sophisticated way, from its rate of change of momentum in the presence of its 
electromagnetic self-interaction. The inertial mass in all such calculations turned out 
to be 4U/3c2 (see for example, Schott [12] for detailed calculations), where U is the 
electrostatic self-potential energy of the charge distribution, also equal to  the volume 
integral of the electrostatic field energy-density, and c is the speed of light in vacuum. 

associated with all energies and that the expected value of mass due to self-fields would 
be U/cZ. This puzzling factor of 4/3 in the inertia of EM energy has ever since been 
highly annoying. 

In 1906, Poincari [I31 pointed out that such a pure EM charge particle would be 
unstable due to forces of self-electrostatic repulsion. By postulating the presence of 
some 'unknown internal (negative) pressure' within the electron for its stability and 
by including an appropriate contribution from these non-electromagnetic stresses he 
was able to get the 'right' relations for the total energy and momentum. Since nothing 
was known about the origin and fundamental nature of these 'PoincarO stresses' within 
the electron, these seemed to be chosen merely to fit the solution. Further this made 
it look as if one could not even calculate the energy-momentum content of just EM 
fields, without questioning the stability of the associated charge-distribution, perhaps 
through some non-electromagnetic interactions, and as if the CTEM were not complete 
in itself. Over the time, the fundamental nature of these peculiar difficulties has led 
many eminent workers to suggest various basic modifications [14-191 in the CTEM. 

Alternatively it has been argued [20-241 that perhaps the conventional formulation 
of the self-interaction or the expressions for the energy-momentum content of the EM 

fields are not fully justified, since these appear relativistically non-covariant. With the 
belief that the energy and momentum of the EM fields should alway behave like the 
components of a 4-vector under a Lorentz transformation, a modified definition of the 
energy-momentum density of EM fields associated with electric charges, seems to be 
gaining wider acceptance [4,5,25-281. This modified definition in fact has been used 
[29] for 'explaining' the null-results of the famous Trouton-Noble experiment [30], 
where the conventional definition of the energy and momentum of electromagnetic 
C-tA-  ---" ,4-v:..-ll., t- ---A:.-+ +...-inn -,.-an+ -I - F r ~ ~ 1 . r  o . . c n n n A ~ A  + h o r n 4  
.1C,U1 y"PuY"lcnrly accLIIa ,U VL'"1.A II L Y ' L L L L . 6  1 L I " L I . C I . L  VL. II . L " C . Y  'U"Y'.L"'" - " Y L 6 * "  

capacitor, as observed from a relatively moving inertial frame of reference. More 
recently a number of arguments have appeared in the literature both for and against 
the modified definition [31-351. Indeed the modified definition comprises the volume 
integrals of the erstwhile defined energy and momentum densities of fields, but now 
computed with respect to a so-space volume fixed in some specific inertial frame. This 
is also apparent from the explicit presence of U, the velocity of the specific inertial 
frame, in the modified definition. In essence, here one has to always first specify an 
inertial frame of reference, define the energy and momentum density of the EM fields 
in this particular frame, and then from the conditions of relativistic covariance can 
the energy and momentum density of the EM fields in all other inertial frames of 

Wih 'h- a&;--' af thP speci.,! thec:y cf re!ativity it becam--, de-: that there is a =ass 
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reference be defined. This specification of an initial inertial frame (somewhat arbitrary, 
at least in the general case), almost goes against the spirit of the special theory of 
relativity. In fact by specifying a diferent initial inertial frame, one could arrive at a 
different value for the energy-momentum content of a given EM field in any inertial 
frame of reference. For the energy-momentum content of an EM field to have a proper 
physical meaning, within the framework of  the special theory of relativity, it is certainly 
desirable that one should be able to define in principle, the energy and momentum 
densities in any inertial frame of reference merely in terms of the field values in that 
frame, without a need for referring to another inertial frame. 

The ‘troublesome factor of 413’ in the electromagnetic mass of a spherical charge 
distribution, or some equivalent numerical factors for other charge distributions, arise 
in what is a pure electromagnetic description of pure electric charges, and therefore 
their explanation also must be found within the realm of the CTEM itself. Furthermore, 
for calculating the energy-momentum of exclusively the EM fields of a charge distribu- 
tion, one should be able to do so without really worrying about the n o n - m  forces 
that may be holding the charges in place. Here the basic question is not about the 
description of an ‘actual’ elementary particle by a pure EM model, rather the question 
is about the mathematical self-consistency of the CTEM itself. We attempt to resolve 
it here by explicitly showing that all that is needed is to take into account all the work 
done by or against all the EM forces in arriving at that charge distribution. In that way 
we show that the earlier proposed modifications of the CTEM or the changes more 
recently suggested in the literature in the definition of energy-momentum densities of 
EM fields are not justified, and that the conventional formulation in the CTEM is fully 
consistent with the special theory of relativity. As we will see further, a full accounting 
of the work done by or against all the EM forces is necessary not only in the ‘classical- 
electron’ models but also in all other types of mascroscopic charge distributions in the 
CTEM, even in the case of a charged parallel plate capacitor where, while calculating 
the stored electromagnetic energy, we never bother about the n o n - m  forces that keep 
the charges from flying away from the plates. Although here we will consider only 
some definite simple charge distributions, yet the conclusions drawn are of the most 
general nature and thus applicable to any charge distribution in classical electromag- 
netism. 

2. ‘Classical-electron’ model 

Right at  the outset we should emphasize that our intention here is not to argue for a 
model of an ‘actual’ electron using only classical electromagnetism, rather we are only 
trying to bring out the source of apparent discrepancies in the description of the charge 
distributions, such as considered previously by Abraham [ 9 ]  and Lorentz [ l ,  111 for 
the ‘electron’ models, all strictly within ‘classical’ electromagnetism. In fact our argu- 
ments are valid for finite size charge distributions, even on macroscopic scales. First 
we will consider the model where the charge is distributed over a thin spherical shell 
(a surface-charge distribution), and then we will also examine the case of a volume. 
charge distribution within a solid sphere. 

2.1. A uniformly charged spherical shell model 

We assume here the charge to be distributed uniformly over a spherical shell of radius 
r. We assume that ‘always’, there is available an inertial frame of reference, called the 
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rest-frame, in which the charge distribution remains rigidly spherical, i.e. there is no 
relative motion between various parts of the charge distribution in its instantaneous 
rest-frame. In that sense, the charge distribution follows a ‘rigid motion’ [7], and any 
acceleration of the system can be thought of as successive transitions of the system 
through a series of ‘rest-frames’, in each of which the charge distribution comes to 
rest momentarily. 

Now there is a mutual force of electrostatic repulsion between various parts of this 
charge distribution, and each element feels an outward repulsive force of 2ru2 per 
unit area [36] in the rest-frame, where U is the surface charge density. But due to its 
spherical symmetry, the net force on the ‘rigid’ shell is zero. The electric field is zero 
inside the shell and follows the inverse square law on the outside. The total energy, 
U,,, in the electrostatic field, calculated from the volume integral of the field energy- 
density E 2 / 8 n ,  is equal to the self-potential energy of the charged sphere, i.e. 

here p represents the volume density of the charge distribution and e =I p du = 4rrr2u 
is the total charge of the sphere. Here all volume integrals are in the rest-frame of the 
charge distribution. 

With this field energy U,, we can associate a mass, U,/c’, called the electromagnetic 
mass of the system. By definition the momentum of the system is zero in the rest-frame. 
Seen from another frame K,  with respect to which the charge is moving with a velocity 
U along the x-axis, the energy and momentum of the system are different as compared 
to those measured in the rest-frame K’. Now two points need to be looked at carefull 

along the direction of motion. This not only changes the shape of the charge distribution 
into an ellipsoid, as seen in K,  but also the resultant surface charge density is no longer 
uniform (although the charge still remains uniformly distributed over a rigid sphere 
as seen in the rest-frame K ’ ) .  The surface elements lying along the direction of motion 
have higher surface charge density due to Lorentz contraction, as seen in K ,  compared 
to those that are lying normal to the x-axis. This in turn causes a greater concentration 
of the lines of electric flux towards a plane normal to the direction of motion for the 
field of a moving charge. It should be emphasized that the Lorentz contraction is a 
real contraction in space [37,38] and that the ellipsoid with a non-uniform surface 
charge density has a different self-potential energy from a uniformly charged spherical 
distribution. Actually work has been done during the Lorentz contraction against the 
forces of self-repulsion, and this excess energy has to be supplied by the very agency 
that is responsible for the state of ‘rigid motion’. Of course the same excess energy 
also appears in the elecfric field of the moving charge. This energy increment during 
Lorentz contraction is over and above the increase in relativistic energy given by the 
usual relativistic transformation formulae, which are applicable to a neutral mass with 
no forces of repulsion within it. Secondly there is an excess momentum of the charge 
distribution over and above the usual relativistic momentum formula %IC2, where 8 
is the total energy of the system in frame K. This extra momentum is due to the fact 
that for this given charged-particle system, as it ‘rigidly’moves along the x-axis (towards 
right, say), there is a continuous Row of energy info the system at its left-sided surface 
(due to the work being done at a rate F .  U, where F is the net force of electrostatic 
repulsion on the left-half of the charge distribution) and the same amount of energy 
is flowing out of the system at its right-sided surface. Although there is no net increase 

Firstly there is a Lorentz contraction of the sphere by a factor y =  I /  Jd; 1 U / c  
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of the system energy due to these flows, there is a continuous transport of energy 
taking place from the left-sided surface to the right-sided surface within the system, 
and this forms a part of the total momentum of the system. Again this is in addition 
to the momentum of the system due to its overall bodily movement towards the right, 
such as in the case of motion of even a neutral mass. 

We can calculate the energy ‘8 and momentum 9 of a moving charge distribution 
in the following way. Let us consider the change in energy of the system when it is 
taken from its state of rest to that of a finite velocity along the x-axis, as seen in an 
inertial frame K.  The implied transition of the system through successive ‘instantaneous’ 
rest-frames would also mean, at each step, a change in Lorentz contraction of the 
system, as seen in K.  The total increase in energy of the charged particle is given by 

d’8 d P  dWL, - U+- 
d t  dt d t  

here the first term on the right-hand side represents the gain in energy due to bodily 
acceleration of the system as a whole, and the second term is due to the work done 
against the forces of self-repulsion of the charge distribution during Lorentz contraction. 

The rate of work done on the system during the Lorentz contraction can be easily 
calculated. All dimensions along the x-axis shrink at a rate d(y-’)/dt. Consider two 

of angular width de, separated by a distance I = 2 r  cos 0 on two opposite sides of the 
spherical shell along the x-axis, as seen in the rest-frame K’ (figure 1). Each ring has 
a surface area d S  = 2rr’ sin 0 do, and the outward force on each ring along the direction 
of their separation (x-axis) is 2nu2 cos 0 dS, as seen in K’. As seen in frame K,  the 
x-component of force on each ring remains unaltered during a Lorentz transformation 
[39] and the distance between both rings contracts at a rate 

Infi.ni!&ma! surface &men& in !he shape of cimu!ar rings, each of r2di.o r sin ,9 and 

so that the rate of work done on these rings due to Lorentz contraction is given by 

d 1  
0 1  \Y/ 

-4nu2r cos2 0~ (-) dS. 

Y 
I 

‘ X  

Figure 1. Geometry of the charged spherical shell, in its rest-frame. 
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After integration over the whole surface, we get the rate of total work being done on 
the charged sphere due to Lorentz contraction as 

where Vo=4?rr3/3 is the total volume of the sphere in its rest-frame. 
The total momentum of the system in frame K includes the term due to energy 

flow associated with the EM forces within the system. Again consider two infinitesimal 
surface elements in the shape of rings, and the cross section of the system enclosed 
between them. At any instant when the system is moving with a velocity U, the work 
being done per unit time on the left ring is 2?ru2 cos 0 d S  U and at the same rate work 
is being done by the right ring, which lies at a distance 1 = 2r  cos O /  y.  In other words 
there is an energy flow at a rate 4?ru2r cos2 0 dSu/ y,  through a cross section d S  cos 0 
of the system. Integration over the total cross section of the system yields a net 
momentum term due to this energy-flow 

2TU2V,U 
YC2 ’ 

It should be emphasized that there is no ‘instant’ appearance of the energy from 
!he !&-sided surface to the right-sided one; rather there is a continuous flow of energy 
across its volume as seen in frame K .  This energy flow is independent of the details 
of how the electromagnetic interaction takes place and is a simple consequence of the 
existence of the forces of mutual repulsion between various parts of the system and 
its linear motion as seen in frame K. Furthermore the contribution of this momentum 
term could be important even for non-relativistic velocities. 

The total momentum of the system is therefore given as 

+ + ~ ) ; .  (4) 

Substituting (3) and (4) in (2) and writing u / c  = p ,  after some simplifications we get, 

d 2 TU’ v, 2?ru2V0 d p  
d: , r / \  
- ( g . 4  = (” + -) I /  V’P, . 

Integrating with time and noting that %,=,,= U,, the self-potential energy for p =0, 
we get 

8= y(uo+2?ru’vop’). 

With the help of (l), we can write it as 

Now substituting for ‘8 in (4) we also get 

YU 9 = ( U , + 2 7 r u 2 V o ) y  
C 

or 
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Equations (5) and (6) are the long sought-after formulae for the electromagnetic energy 
and momentum of a moving charge. Note the presence of the factor 41 3 in (6) even 
for non-relativistic velocities. 

Now we can also calculate volume integrals of the energy and momentum densities 
of the EM fields of a moving charge in frame K,  from the standard formulae [26-28,361 
as, 

where E and B are the electric and magnetic fields of the uniformly moving charge, 
with B = /3 x E. In Pficld the volume integral over only the x-component is non-zero 
because of the circular-cylindrical symmetry of the system about the x-axis. 

These integrals can be evaluated more simply by making a change of variable into 
the coordinates of K ’  and using the transformation relation in fields and volume 
element between K and K’, 

E,=Ei  E, = yE: dv = dv’/ y 

to get 1281 

4ii22f 
\ TI 3 c  %Id=- 0 2 

../. , P‘\ iffield = y u ,  I t  

and these are exactly the expressions as obtained for the ‘particle’ picture of the charge 
distribution, namely (5) and (6). 

2.2. A solid spherical charge distribution 

Actually this case is essentially the same as that of the spherical shell model, differing 
only in the mathematical detail. If p is the uniform charge density, distributed in a 
spherical volume of radius R, then the radial force density due to the electrostatic field 
inside the sphere, in the rest-frame K’, is given by 

47r 2~ PE=-p r 
3 

for r S R .  
Consider a spherical shell of a radius r and of a thickness dr, and hence of a 

surface charge density p d r  as seen in the rest-frame K‘. The rate of work done against 
the electromagnetic forces during Lorentz contraction of this charged shell, as seen in 
K, is calculated to be 

- ( y p )  ’ d  -(-)r4dr. 1 

dt Y 

An integration over the whole spherical volume gives the total rate of work being done 
against the Lorentz contraction as 

dWL, e’ d 1 __=_-- 
dt SR dt (7) (7) 

where e = 4rrpR3/3 is the total charge of the system. 
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In the same manner the momentum component due to energy-flow caused by the 
forces of self-repulsion is calculated to be 

Therefore the total momentum is written as 

Using (7) and (8) and proceeding from (2) as in the earlier case, we finally get 

g = - - y  3 e 2  ( I f -  p32) = U  oy(l+$) 
5 R  

and 

where U, = 3 e 2 / 5 R  is the self-potential energy of the charge distribution in its rest- 
frame. 

If we calculate the energy and momentum of the EM fields of this charge distribution, 
now moving with a uniform velocity U in the inertial frame K, we get formulae for 
$e,d and identical to those as calculated for the 'particle' picture of the charge 
distribution, namely (9) and (10). 

Before proceeding further we would like to point out an interesting aspect of the 
energy distribution between electric and magnetic fields of a moving charge. If we 
calculate energies in the electric and magnetic fields separately, we find that in a 
semi-relativistic treatment (up to terms of order p'), the energy in electric field 
represents the self-potential energy (internal energy!) of the charge distribution, while 
that in the magnetic field represents the kinetic energy of motion of the system. For 
example, the energy in the electric field of a moving charge, in frame K,  is, 

Thus the energy in electric field of a moving charge is higher than that of a stationary 
charge by an amount U,,p2/6. Actually this increase just reflects the gain in the 
self-potential energy of the charge distribution during the Lorentz contraction, also 
calculated respectively from ( 3 )  or (7) as, 

P 2  - 1 - -  =(I-, "'( 3 i) ' 6 

In fact a calculation for the electrostatic self-potential energy of a stationary ellipsoid, 
obtained from a spherical charge distribution throu h a uniform compression of its 
linear dimensions along the x-axis by a factor f l  1 p2 (thus realizing exactly the same 
charge distribution as of our moving charge seen in frame K) ,  gives 1401 
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where U, is the self-potential energy of the spherical charge distribution, i.e. for 6 = 0. 
This further confirms our statement about the electric field energy representing basically 
the self-potential energy even for a moving charge. 

At the same time the energy in magnetic field is calculated to be 

... L.L. .~.-..> .~ _.~- wnicn is reiaieu to me momenium of ihe  charge disiribuiion ((6) or (iOjj by gmag= 
9’1112, which is exactly the expression for kinetic energy in classical mechanics. Thus 
the analogy usually drawn between the electric and magnetic field energies in an 
oscillatory electrical circuit on one side and the potential and kinetic energies of a 
mechanical harmonic oscillator on the other side [41], becomes more of a homology 
in the case of motion of a pure EM charge. 

Thus we see that there is no conflict in the ‘particle’ picture for a charge distribution 
and its EM fields in the CTEM. The earlier confusion was caused by the fact that the 
usual Lorentz transformation formulae for energy-momentum were thought to be 
equally valid for a pure charge distribution. Of course we do not imply that now we 
can have a pure electromagnetic model for some elementary charged particle actually 
found in nature, e.g. an electron or a muon. A quantum electrodynamical treatment 
[42! !or perhaps something more exotic [43!) only might give a realistic model of an 
elemenentary charged particle. Our intention here has been only to show that for a 
giuen charge distribution, without actually worrying about any non-electromagnetic 
forces which may ultimately be needed to keep the charges in place, we do get a 
consistent picture of the energy and momentum of electromagnetic origin when we 
properly take into account all the work done by or against all the electromagnetic 
forces that prevail in the system. In that sense the CTEM is complete in itself and is a 
mathematically consistent theory, fully compatible with the special theory of relativity. 

This becomes clearer from the fact that the type of effects we have discussed above 
need to be taken into account not just in the case of the spherical charge distribution 
models of the ‘classical-electron’, but in any charge distribution in the CTEM, otherwise 
we would always run into some inconsistencies during a Lorentz transformation of 
the electromagnetic field energy and momentum. To illustrate this point further we 
shall now consider the simple case of a charged parallel plate capacitor, where for 
example, while calculating the energy stored in the electromagnetic fields, we never 
pause to wonder what may be the (non-electromagnetic) forces that keep the charges 
from flying away from the plate surfaces. 

3. A cbqe:!  perz!!e! p!z!e eepeci!er 

We shall consider the motion of a charged parallel plate capacitor in directions both 
normal to the plate surfaces as well as parallel to the plate surfaces. As we will see, 
the effects of a Lorentz transformation are quite different in the two cases, and in fact 
in the latter case the electromagnetic forces that are at work are not immediately obvious. 

3.1. Motion normal to the plate surfaces 

For simplicity we assume that the dimensions ( a  and b )  of the capacitor plates are 
much larger than the plate separation, h, so that the electric fields within the capacitor 
can be considered, with negligible errors, to be the same as in the case of infinite 
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plates. Let +U and -U be the surface charge densities on the two oppositely charged 
plates, then the electrostatic field is a constant, 47rq in the region between the two 
plates, and is zero everywhere outside. The mutual force of attraction on each plate 
is 2vu2 per unit area [36 ] ,  and the electric potential energy U, accumulated in separating 
the two plates by a distance h is 27ru2Ah, where A = a b  is the surface area of each 
plate. Of course the volume integral of the energy density of the electrostatic field, 
( 4 a ~ ) ~ A h / 8 ? r ,  is also the same as U,. 

Now if we see this system from an inertial frame K,  with respect to which the 
charged capacitor is moving along the x-axis with a velocity U (figure 2), the electric 
field strength remains the same, E = E ’ = ~ T u  within the capacitor volume and zero 
outside. But as the whole system is Lorentz contracted by a factor y along the x-axis, 
the total EM field energy as calculated in K is U0/y .  The magnetic field is zero 
everywhere, therefore the field momentum is zero. 

Figure 2. A parallel plate capacitor with a motion normal to the plate surfaces 

- - - -~ - - .^ I_^  :- ---...- A:-.:-- __.:.I_ .I_^ _ _ ^ _ _  ^ I  r c---*.:-- F  ̂ 1”- 
i i n b  aypcais LU uc 1 ~ 1  C U I I L L ~ U I U I U L L  w i u i  L ~ L C  ubuai LUIC~LLZ L L ~ I L ~ L U L I I I ~ L L V L I  IuImuiac: 

where we would expect the energy of the moving system to have increased by a factor 
y. Where has this energy disappeared? 

Actually there is the force of attraction between the plates, and during a Lorentz 
contraction the system gives up energy to the very agency that is responsible for the 
state of ‘rigid motion’ [7]. Further there is a negative momentum component (i.e. in 
a direction opposite to the motion of the capacitor); due to the ene rg  flow caused by 
the force of attraction between the moving plates. 

Proceeding as in earlier cases, the rate of change of energy ofthe system is calculated 
to be 

and total momentum of the system as 
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where Vo = Ah is the volume of the region between the capacitor plates in the rest-frame. 
From these we get, 

and 

these being in perfect agreement with the values calculated above for the EM fields. 
Thus we see that even in the simple case of a parallel plate capacitor, we get a 

consistent picture of the energy-momentum of the EM fields only by a proper accounting 
of the work done by the electromagnetic forces during the motion of the system. 

3.2. Motion along the plate surfaces 

We assume the plates to be lying in the x-y plane (figure 3). The electfic field between 
the plates is parallel to the r-direction. The potential energy of the system as well as 
the energy in the electrostatic field is U,= ~ T U ~ V , ,  in the rest-frame. But in frame K,  

field between the plates goes up by a factor y, thus there is an increase in the electric 
field energy-density in between the plates, by a factor y2.  The total surface area of the 
plates, and hence also the volume enclosed by the capacitor plates, shrinks by a factor 
y, there being no change in the plate separation. Therefore there is a net increase in 
the total electric field energy by a factor y. This appears all right at a first look since 
the net force of attraction between the plates being in the z-direction, there is no work 
done by it due to the motion of the plates along x-axis, and thus the usual relativistic 
formula for the energy transformation seems applicable. But there is also a magnetic 
field ( B  = p x E) along the y-axis, in between the plates, as seen in K.  The total energy 
in the EM fields therefore is yUo(1+p2), and also there is a net field momentum 
2Uoyu/c2, along the x-axis. 

To seek the origin of this extra energy and momentum in the EM fields, it should 
be noted that there are electromagnetic forces of repulsion on charges within each 
plate, along its surface. We ignored these repulsive forces in the earlier case because 
no work is done by these forces for a motion normal to the plate surface, but in the 
present case of a motion parallel to the plate surface, work is done against these forces 

Wi!h respec! !O which tb-. c2p2citor p!ates Ire .I?!?ving 2!ong the X-EXiS, the e!ec!ri.c 

Z 

- x  

t-a/V----i 
Figure 3. A parallel plate capacitor with a motion parallel to the plate surfaces 
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during a Lorentz contraction. The forces are indeed small near the plate-centres and 
are appreciable only near the plate-edges, and it might seem that for the plate 
dimensions ( a  and b )  large enough as compared to the plate separation ( h ) ,  the effect 
of these forces should be negligible. But as we will see below, the amount of work 
done during a Lorentz contraction in this case also is proportional to the total volume 
enclosed within the capacitor, for h CC a, b. 

As all motions considered are along the x-axis, only the x-component of the forces 
of repuision wiii be reievant for our purpose. Now ihe muiuai eiecirosiaiic force of 
repulsion between two line charges, each with a linear charge density A and of a length 
b, separated by a distance x is easily calculated to be 

Accordingly the net force of repulsion on a line charge of linear charge density U dx 
lying at x, due to both plates (figure 4) is given by 

(x-x') 

h2+ (x -x')' 
) - lo2x-m dx' 

bz + ( x - x')' - (x - x') 

x-x'  
2u2 dx [ [ozr-a dx' ( 

where the second integral term represents the x-component of the force of attraction 
on the line element at x due to the oppositely charged plate lying at a distance h 
below. Here we have taken the line element at x to be in the right-half of the plate, 
which experiences a net force towards the +ue x-axis; the left-half of each plate would 
equally experience a net force along the -ve x-axis. Further, only the portion of each 
plate lying between 0 and 2 x - a  contributes a net force at x, the force due to the 
remaining portion of each plate gets cancelled because of its symmetry about x. 

Z 

X 

Figure 4. Geometry of the parallel plate capacitor in its rest-frame, for calculating the 
forces of self-repulsion within each plate of the capacitor. 

Now as observed from an inertial frame K, with respect to which the capacitor 
moves towards the right (along +uex-axis) with a velocity U, the x-component of force 
on a charge element remains invariant. Therefore the rate of work being done against 
the forces of self-interaction, during Lorentz contraction of both plates, is written as 
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(with a change of variable x - x' = c), 

= -4u2 (!) loa dx (2x - a ) [  (m- x + m - J )  
d t  Y 

-b  In ( J x 2 +  
b2+ h 2 -  b 

m - b  

where y = 11- is the Lorentz factor. An extra factor of 2 in the above expression 
has entered because work is done against Lorentz contraction of each plate. 

With the help of the indefinite integrals, 

x2+ b2+  h 2 -  b 

= x  In (""-") + b  In ( m - x )  m 
bx 

h m  
+ h  tan-' 

and 

dx=f (x2+h2)  In I 
m 2 

and after some lengthy calculations, we finally get the following expression for the 
rate of work done against Lorentz contraction of the system, 

- 4 0 . ~ -  d (-)[ 1 g ( 7  a 2 +  h 2 -  h + m - J a 2 +  b 2 +  h 2 )  

- e ( m - b + m - J a 2 + b 2 + h 2 )  3 

+ x ( J a 2 + h 2 - a + m - J a 2 +  a2  - b Z + h 2 )  

dr Y 

ab2 
JbZ+h2 - - a  

+-In( 2 

ah2  , 
Jb2+h2 J T Z - a  

---In( 2 

h m '  ab 1 Ja2+b2+h2- b ) + a b ,  tan-' -bh2 In ( Ja'+hz m - b  

We can expand this 
series in hla ,  h lb ,  

looking expression in terms of an ascending power 

-4u'abh -+0 -,-,- [; (1: ," &)I33 
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where O(. . .) represents the first- and higher-order power series terms in h f a, h / b ,  etc. 
Therefore for h << a,  b, this reduces to 

where V, = abh is the volume enclosed in between the capacitor plates in the rest-frame. 
In a similar manner the component of momentum due to energy flow associated 

with the forces of self-interaction in the system is calculated to be 

Using these last two expressions and proceeding in the same manner as in the earlier 
cases; we get 

which are exactly the expressions obtained for the energy and momentum of the EM 

fields. in frame K. 

4. Discussion 

We have seen that with a proper accounting of all contributions by the EM forces in 
the system, the relativistic energy and momentum of a macroscopic charge distribution 
turns out to be the same as calculated from the conventional expressions for the 
energy-momentum density of its EM fields, although sometimes the effect of these 
forces may not be so obvious, as for example in the case of a charged capacitor moving 
parallel to its plate surfaces. In particular it was seen that the potential energy of a 
charge distribution changes, due to Lorentz contraction of the system, when it is set 
in motion. This change must reflect in the electric field energy since that basically 
represents the potential energy of the charge distribution. Further, there is a momentum 
associated with the energy flow due to forces of EM interaction in a moving charge 
system, and this also should show up  in the EM fields of the system. As we have shown, 
the conventional expressions for the energy and momentum of the EM fields do  comprise 
these contributions. Thus the notion that the energy-momentum of EM fields should 
behave as a 4-vector, even in the presence of charges, is ill-founded, since that ignores 
the additional contribution of the EM forces to the energy and momentum, when the 
system is set in motion. The changes suggested in the literature in the definition of 
energy-momentum of EM fields, so as to make them always transform as a 4-vector 
under a Lorentz transformation, are not justified, since that would amount to selectively 
excluding some effects of the EM interaction from the EM fields. It is only by  including 
the contribution of all EM interactions in the energy-momentum of EM fields, we can 
hope to maintain a consistent picture throughout, and that is done precisely by the 
conventional definition. 

Since no static system could be ‘purely electromagnetic’ in nature, a question may 
arise about the transformation properties of the energy and momentum of a complete 
system. A sratic configuration of any electromagnetic system in its rest-frame implies 
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that there are forces of constraint in the system which necessarily have to he equal 
and opposite to the forces of electromagnetic interaction everywhere, irrespective of 
the ultimate nature of the forces of constraint. For example in the case of a charged 
parallel plate capacitor, the forces of constraint would not only maintain the fixed 
separation between the capacitor plates in spite of the force of mutual attraction 
between them, hut would also keep the charges confined to their respective locations 
on the plate surfaces in spite of the net force of electrostatic repulsion on them. Now 
as seen from another inertial frame, with respect to which the charged system is in 
motion, the work done by the forces of constraint during a Lorentz contraction and 
the momentum associated with the energy flow due to forces of constraint would be 
equal and opposite to those corresponding to the forces of electromagnetic origin, 
since the two forces are everywhere equal and opposite. An inclusion of the contribution 
of the terms due to forces of constraint would therefore cancel the corresponding terms 
arising due to the forces of electromagnetic origin (for example, the second term on 
the right-hand side of (2) and (4)) in the energy and momentum of the moving system. 
As a result, the energy-momentum of the total system would behave as a 4-vector 
under a Lorentz transformation. This in fact is the key factor in a proper resolution 
[44] of the paradox associated with the null-results of the Trouton-Noble experiment, 
where the energy and momentum of the total system remain independent of the 

of reference. Thus we see that the energy and momentum of a 'real' charged particle, 
which includes contributions both of the electromagnetic self-interaction and of the 
forces of constraint, would transform as a 4-vector, while the energy and momentum 
of its EM fields, which can represent only the 'pure electromagnetic part', would not 
transform as a 4-vector. 

-'-.Le =-"-I..- >-A ,.L"--"> -"--":.-- ___:.L ..-----..- ^ I ,  :---.:..I ,--"..A- 
UlLCLlldUUCl U L  L U G  L l K C l J  bU>pr;UUr;U LUdLgCU L d p d L L L U L ,  W l U l  LCbpFLL L U  d!, lllcillldl L I d l l i c i D  

5. Conclusions 

We have shown that the energy and momentum of a 'pure electromagnetic' charged 
system, with net electromagnetic forces between its parts, does not behave as a 4-vector 
under a Lorentz transformation. Accordingly the energy and momentum of the elec- 
tromagnetic fields, which represent just the 'pure electromagnetic part' of a real charged 
system, would also not behave as a 4-vector under a Lorentz transformation, in the 
presence of electromagnetic forces. In that respect, therefore, there is no conflict 
between the CTEM and the theory of relativity and any lingering doubts ahout the 
mathematical self-consistency of the CTEM are removed. On the other hand, the modified 
definition, as suggested in the literature for the energy and momentum of electromag- 
netic fields so as to make them always transform as components of a 4-vecto1, is not 
justified since it is only the total energy and momentum (including that of the forces 
of constraint) of a system which would transform as a 4-vector. 
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